enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermodynamic activity - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_activity

    The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.

  3. Thermodynamic equilibrium - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equilibrium

    Classical thermodynamics deals with states of dynamic equilibrium.The state of a system at thermodynamic equilibrium is the one for which some thermodynamic potential is minimized (in the absence of an applied voltage), [2] or for which the entropy (S) is maximized, for specified conditions.

  4. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.

  5. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    Non-equilibrium thermodynamics is a branch of thermodynamics that deals with systems that are not in thermodynamic equilibrium. Most systems found in nature are not in thermodynamic equilibrium because they are not in stationary states, and are continuously and discontinuously subject to flux of matter and energy to and from other systems.

  6. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    An interesting avenue of study is to examine solutions to such systems not by iterating the dynamical system over time, but instead, to study the corresponding Frobenius-Perron operator or transfer operator for the system. For some of these systems, it can be explicitly, mathematically shown that the transfer operators are not trace-class.

  7. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    The laws of thermodynamics are the result of progress made in this field over the nineteenth and early twentieth centuries. The first established thermodynamic principle, which eventually became the second law of thermodynamics, was formulated by Sadi Carnot in 1824 in his book Reflections on the Motive Power of Fire.

  8. Zeroth law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Zeroth_law_of_thermodynamics

    The zeroth law of thermodynamics is one of the four principal laws of thermodynamics. It provides an independent definition of temperature without reference to entropy, which is defined in the second law. The law was established by Ralph H. Fowler in the 1930s, long after the first, second, and third laws had been widely recognized.

  9. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes.The law distinguishes two principal forms of energy transfer, heat and thermodynamic work, that modify a thermodynamic system containing a constant amount of matter.