Search results
Results from the WOW.Com Content Network
In mechanics, strain is defined as relative deformation, compared to a reference position configuration. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered.
In chemistry, a molecule experiences strain when its chemical structure undergoes some stress which raises its internal energy in comparison to a strain-free reference compound. The internal energy of a molecule consists of all the energy stored within it.
In a molecule, strain energy is released when the constituent atoms are allowed to rearrange themselves in a chemical reaction. [1] The external work done on an elastic member in causing it to distort from its unstressed state is transformed into strain energy which is a form of potential energy.
Strain (biology), variants of biological organisms; Strain (chemistry), a chemical stress of a molecule; Strain (injury), an injury to a muscle; Strain (mechanics), a measure of deformation; Filtration, separating fluids from solids by passing through a filter; Percolation, of fluids through porous materials; Psychological stress
In physics and continuum mechanics, deformation is the change in the shape or size of an object. It has dimension of length with SI unit of metre (m). It is quantified as the residual displacement of particles in a non-rigid body, from an initial configuration to a final configuration, excluding the body's average translation and rotation (its rigid transformation). [1]
The definition of strain rate was first introduced in 1867 by American metallurgist Jade LeCocq, who defined it as "the rate at which strain occurs. It is the time rate of change of strain." In physics the strain rate is generally defined as the derivative of the strain with respect to time. Its precise definition depends on how strain is measured.
The strain tensor itself can be defined to reflect distortion in any way that results in invariance under total rotation, but the most common definition with regard to which elastic tensors are usually expressed defines strain as the symmetric part of the gradient of displacement with all nonlinear terms suppressed: = (+) where is the ...
The modulus of elasticity can be used to determine the stress–strain relationship in the linear-elastic portion of the stress–strain curve. The linear-elastic region is either below the yield point, or if a yield point is not easily identified on the stress–strain plot it is defined to be between 0 and 0.2% strain, and is defined as the ...