enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential factorial - Wikipedia

    en.wikipedia.org/wiki/Exponential_factorial

    The first few exponential factorials are 1, 2, 9, 262144, ... The number of digits in the exponential factorial of 6 is approximately 5 × 10 183 230.

  3. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The word "factorial" (originally French: factorielle) was first used in 1800 by Louis François Antoine Arbogast, [18] in the first work on Faà di Bruno's formula, [19] but referring to a more general concept of products of arithmetic progressions. The "factors" that this name refers to are the terms of the product formula for the factorial.

  4. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    The exponential function is the sum of a power series: [2] [3] ⁡ = + +! +! + = =!, where ! is the factorial of n (the product of the n first positive integers). This series is absolutely convergent for every x {\displaystyle x} per the ratio test .

  5. Googol - Wikipedia

    en.wikipedia.org/wiki/Googol

    A googol is the large number 10 100 or ten to the power of one ... (factorial of 70). Using an integral, binary numeral system, one would need 333 bits ...

  6. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  7. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    An exponential factorial is an operation recursively defined as =, = . For example, a 4 = 4 3 2 1 {\displaystyle \ a_{4}=4^{3^{2^{1}}}\ } where the exponents are evaluated from the top down. The sum of the reciprocals of the exponential factorials from 1 onward is approximately 1.6111 and is transcendental.

  8. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A factorial x! is the product of all numbers from 1 to x. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 (sequence A000142 in the OEIS). 0! = 1 is sometimes included. A k-smooth number (for a natural number k) has its prime factors ≤ k (so it is also j-smooth for any j > k).

  9. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.