Search results
Results from the WOW.Com Content Network
Whereas the concept of water activity is widely known and utilized in the applied biosciences, its complement—the protein activity which quantitates protein–protein interactions—is much less familiar to bioscientists as it is more difficult to determine in dilute solutions of proteins; protein activity is also much harder to determine for ...
Protein–lipid interaction is the influence of membrane proteins on the lipid physical state or vice versa.. The questions which are relevant to understanding of the structure and function of the membrane are: 1) Do intrinsic membrane proteins bind tightly to lipids (see annular lipid shell), and what is the nature of the layer of lipids adjacent to the protein?
Molecular diagnostics uses in vitro biological assays such as PCR-ELISA or Fluorescence in situ hybridization. [19] [20] The assay detects a molecule, often in low concentrations, that is a marker of disease or risk in a sample taken from a patient.
Myristoylation has been shown to be necessary for the survival of a number of disease-causing fungi, among them C. albicans and C. neoformans. In addition to prokaryotic bacteria, the NMTs of numerous disease-causing eukaryotic organisms have been identified as drug targets as well.
A protein microarray (or protein chip) is a high-throughput method used to track the interactions and activities of proteins, and to determine their function, and determining function on a large scale. [1] Its main advantage lies in the fact that large numbers of proteins can be tracked in parallel.
Common lipid signaling molecules: lysophosphatidic acid (LPA) sphingosine-1-phosphate (S1P) platelet activating factor (PAF) anandamide or arachidonoyl ethanolamine (AEA). Lipid signaling, broadly defined, refers to any biological cell signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these ...
Methods that screen protein–protein interactions in the living cells. Bimolecular fluorescence complementation (BiFC) is a technique for observing the interactions of proteins. Combining it with other new techniques, dual expression recombinase based methods can enable the screening of protein–protein interactions and their modulators. [1]
Within the field of molecular biology, a protein-fragment complementation assay, or PCA, is a method for the identification and quantification of protein–protein interactions. In the PCA, the proteins of interest ("bait" and "prey") are each covalently linked to fragments of a third protein (e.g. DHFR, which acts as a "reporter").