Search results
Results from the WOW.Com Content Network
In the classical central-force problem of classical mechanics, some potential energy functions () produce motions or orbits that can be expressed in terms of well-known functions, such as the trigonometric functions and elliptic functions. This article describes these functions and the corresponding solutions for the orbits.
In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field.A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.
The problem of two fixed centers conserves energy; in other words, the total energy is a constant of motion.The potential energy is given by =where represents the particle's position, and and are the distances between the particle and the centers of force; and are constants that measure the strength of the first and second forces, respectively.
In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. [1] There is no scientific consensus on why, for example, the weak force is 10 24 times stronger than gravity .
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
(more unsolved problems in physics) In cosmology , the cosmological constant problem or vacuum catastrophe is the substantial disagreement between the observed values of vacuum energy density (the small value of the cosmological constant ) and the much larger theoretical value of zero-point energy suggested by quantum field theory .
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...
The block-stacking problem is the following puzzle: Place N {\displaystyle N} identical rigid rectangular blocks in a stable stack on a table edge in such a way as to maximize the overhang. Paterson et al. (2007) provide a long list of references on this problem going back to mechanics texts from the middle of the 19th century.