Search results
Results from the WOW.Com Content Network
This form is invariant under the Lorentz group, so that for S ∈ SL(2, C) one has , = , This defines a kind of "scalar product" of spinors, and is commonly used to defined a Lorentz-invariant mass term in Lagrangians. There are several notable properties to be called out that are important to physics.
A simple Lorentz scalar in Minkowski spacetime is the spacetime distance ("length" of their difference) of two fixed events in spacetime. While the "position"-4-vectors of the events change between different inertial frames, their spacetime distance remains invariant under the corresponding Lorentz transformation.
In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same for all observers that are moving with respect to one another within an inertial frame. It has also ...
This is the formula for time dilation: ... The Lorentz transformations also ... ds 2 is known as the spacetime interval. This inner product is invariant under the ...
This can also be expressed in terms of the four-velocity by the equation: [2] [3] = = where: is the charge density measured by an inertial observer O who sees the electric current moving at speed u (the magnitude of the 3-velocity);
The corresponding result for superstring theory is again deduced demanding Lorentz invariance, but now with supersymmetry. In these theories the Poincaré algebra is replaced by a supersymmetry algebra which is a Z 2-graded Lie algebra extending the Poincaré algebra. The structure of such an algebra is to a large degree fixed by the demands of ...
Given two inertial or rotated frames of reference, a four-vector is defined as a quantity which transforms according to the Lorentz transformation matrix Λ: ′ =. In index notation, the contravariant and covariant components transform according to, respectively: ′ =, ′ = in which the matrix Λ has components Λ μ ν in row μ and column ν, and the matrix (Λ −1) T has components Λ ...
The distance is purely spatial, and is always positive. In spacetime, the separation between two events is measured by the invariant interval between the two events, which takes into account not only the spatial separation between the events, but also their separation in time. The interval, s 2, between two events is defined as: