Search results
Results from the WOW.Com Content Network
The source free equations can be written by the action of the exterior derivative on this 2-form. But for the equations with source terms (Gauss's law and the Ampère-Maxwell equation), the Hodge dual of this 2-form is needed. The Hodge star operator takes a p-form to a (n − p)-form, where n is the number of dimensions.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĖ, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
One consequence of this quantization is that the classical formula for calculating the electrical resistance of a wire, R = ρ l A , {\displaystyle R=\rho {\frac {l}{A}},} is not valid for quantum wires (where ρ {\displaystyle \rho } is the material's resistivity , l {\displaystyle l} is the length, and A {\displaystyle A} is the cross ...
The telegrapher's equations (or just telegraph equations) are a pair of linear differential equations which describe the voltage and current on an electrical transmission line with distance and time. They were developed by Oliver Heaviside who created the transmission line model , and are based on Maxwell's equations .
One particle: N particles: One dimension ^ = ^ + = + ^ = = ^ + (,,) = = + (,,) where the position of particle n is x n. = + = = +. (,) = /.There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum): [1] â â = | |.
The telegrapher's equations then describe the relationship between the voltage V and the current I along the transmission line, each of which is a function of position x and time t: = (,) = (,) The equations themselves consist of a pair of coupled, first-order, partial differential equations. The first equation shows that the induced voltage is ...
If wire 1 is also infinite, the integral diverges, because the total attractive force between two infinite parallel wires is infinity. In fact, what we really want to know is the attractive force per unit length of wire 1. Therefore, assume wire 1 has a large but finite length .
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.