enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    Explicit and implicit methods are approaches used in numerical analysis for obtaining numerical approximations to the solutions of time-dependent ordinary and partial differential equations, as is required in computer simulations of physical processes.

  3. Midpoint method - Wikipedia

    en.wikipedia.org/wiki/Midpoint_method

    The explicit midpoint method is sometimes also known as the modified Euler method, [1] the implicit method is the most simple collocation method, and, applied to Hamiltonian dynamics, a symplectic integrator. Note that the modified Euler method can refer to Heun's method, [2] for further clarity see List of Runge–Kutta methods.

  4. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Explicit examples from the linear multistep family include the Adams–Bashforth methods, and any Runge–Kutta method with a lower diagonal Butcher tableau is explicit. A loose rule of thumb dictates that stiff differential equations require the use of implicit schemes, whereas non-stiff problems can be solved more efficiently with explicit ...

  5. Predictor–corrector method - Wikipedia

    en.wikipedia.org/wiki/Predictor–corrector_method

    A simple predictor–corrector method (known as Heun's method) can be constructed from the Euler method (an explicit method) and the trapezoidal rule (an implicit method). Consider the differential equation ′ = (,), =, and denote the step size by .

  6. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    Explicit methods have a strictly lower triangular matrix A, which implies that det(I − zA) = 1 and that the stability function is a polynomial. [32] The numerical solution to the linear test equation decays to zero if | r(z) | < 1 with z = hλ. The set of such z is called the domain of absolute stability.

  7. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Iterative methods such as Newton's method are often used to solve the implicit formula. Sometimes an explicit multistep method is used to "predict" the value of +. That value is then used in an implicit formula to "correct" the value. The result is a predictor–corrector method.

  8. Alternating-direction implicit method - Wikipedia

    en.wikipedia.org/wiki/Alternating-direction...

    In numerical linear algebra, the alternating-direction implicit (ADI) method is an iterative method used to solve Sylvester matrix equations.It is a popular method for solving the large matrix equations that arise in systems theory and control, [1] and can be formulated to construct solutions in a memory-efficient, factored form.

  9. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.