Search results
Results from the WOW.Com Content Network
The order of quantifiers is critical to meaning, as is illustrated by the following two propositions: For every natural number n, there exists a natural number s such that s = n 2. This is clearly true; it just asserts that every natural number has a square. The meaning of the assertion in which the order of quantifiers is reversed is different:
Example requires a quantifier over predicates, which cannot be implemented in single-sorted first-order logic: Zj → ∃X(Xj∧Xp). Quantification over properties Santa Claus has all the attributes of a sadist. Example requires quantifiers over predicates, which cannot be implemented in single-sorted first-order logic: ∀X(∀x(Sx → Xx) → ...
This language uses the same operators as tuple calculus, the logical connectives ∧ (and), ∨ (or) and ¬ (not). The existential quantifier (∃) and the universal quantifier (∀) can be used to bind the variables. Its computational expressiveness is equivalent to that of relational algebra. [2]
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or ...
A model with this condition is called a full model, and these are the same as models in which the range of the second-order quantifiers is the powerset of the model's first-order part. [3] Thus once the domain of the first-order variables is established, the meaning of the remaining quantifiers is fixed.
In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!"
The scope of a quantifier is the part of a logical expression over which the quantifier exerts control. [3] It is the shortest full sentence [5] written right after the quantifier, [3] [5] often in parentheses; [3] some authors [11] describe this as including the variable written right after the universal or existential quantifier.
Conjunctive queries without distinguished variables are called boolean conjunctive queries.Conjunctive queries where all variables are distinguished (and no variables are bound) are called equi-join queries, [1] because they are the equivalent, in the relational calculus, of the equi-join queries in the relational algebra (when selecting all columns of the result).