enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Massenergy_equivalence

    Mass–energy equivalence arose from special relativity as a paradox described by the French polymath Henri Poincaré (1854–1912). [4] Einstein was the first to propose the equivalence of mass and energy as a general principle and a consequence of the symmetries of space and time.

  3. On shell and off shell - Wikipedia

    en.wikipedia.org/wiki/On_shell_and_off_shell

    the mass–energy equivalence formula which gives the energy in terms of the momentum and the rest mass of a particle. The equation for the mass shell is also often written in terms of the four-momentum ; in Einstein notation with metric signature (+,−,−,−) and units where the speed of light c = 1 {\displaystyle c=1} , as p μ p μ ≡ p ...

  4. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  5. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    Thus, the mass in the formula = is the relativistic mass. For a particle of ... Where m > 0 and p = 0, this equation again expresses the mass–energy equivalence E = m.

  6. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    Once this mass difference, called the mass defect or mass deficiency, is known, Einstein's mass–energy equivalence formula E = mc 2 can be used to compute the binding energy of any nucleus. Early nuclear physicists used to refer to computing this value as a "packing fraction" calculation.

  7. Timeline of special relativity and the speed of light - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_special...

    Also, Poincaré is the first to describe the relativistic velocity-addition formula – implicitly in his publication and explicitly in his letter to Lorentz. 1905 – Albert Einstein publishes his special theory of relativity, including the mass–energy equivalence that would be later written as E = mc 2.

  8. Electromagnetic mass - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_mass

    This contradicts the mass–energy equivalence formula, which requires the relation = / without the 4 ⁄ 3 factor, or in other words, four-momentum doesn't properly transform like a four-vector when the 4 ⁄ 3 factor is present.

  9. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    Some of the tests of the equivalence principle use names for the different ways mass appears in physical formulae. In nonrelativistic physics three kinds of mass can be distinguished: [14] Inertial mass intrinsic to an object, the sum of all of its mass–energy. Passive mass, the response to gravity, the object's weight.