enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    The circumcircle of three collinear points is the line on which the three points lie, often referred to as a circle of infinite radius. Nearly collinear points often lead to numerical instability in computation of the circumcircle. Circumcircles of triangles have an intimate relationship with the Delaunay triangulation of a set of points.

  3. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Four line segments, each perpendicular to one side of a cyclic quadrilateral and passing through the opposite side's midpoint, are concurrent. [ 23 ] : p.131, [ 24 ] These line segments are called the maltitudes , [ 25 ] which is an abbreviation for midpoint altitude.

  4. Euler line - Wikipedia

    en.wikipedia.org/wiki/Euler_line

    In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.

  5. Orthocentric system - Wikipedia

    en.wikipedia.org/wiki/Orthocentric_system

    Common nine-point circle, where N, O 4, A 4 are the nine-point center, circumcenter, and orthocenter respectively of the triangle formed from the other three orthocentric points A 1, A 2, A 3. The center of this common nine-point circle lies at the centroid of the four orthocentric points. The radius of the common nine-point circle is the ...

  6. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    To draw the circumcircle, draw two perpendicular bisectors p 1, p 2 on the sides of the bicentric quadrilateral a respectively b. The perpendicular bisectors p 1, p 2 intersect in the centre O of the circumcircle C R with the distance x to the centre I of the incircle C r. The circumcircle can be drawn around the centre O.

  7. Concyclic points - Wikipedia

    en.wikipedia.org/wiki/Concyclic_points

    The vertices of every triangle fall on a circle called the circumcircle. (Because of this, some authors define "concyclic" only in the context of four or more points on a circle.) [2] Several other sets of points defined from a triangle are also concyclic, with different circles; see Nine-point circle [3] and Lester's theorem.

  8. de Longchamps point - Wikipedia

    en.wikipedia.org/wiki/De_Longchamps_point

    Thus, it is collinear with all the other triangle centers on the Euler line, which along with the orthocenter and circumcenter include the centroid and the center of the nine-point circle. [1] [3] [4] The de Longchamp point is also collinear, along a different line, with the incenter and the Gergonne point of its triangle.

  9. Midpoint - Wikipedia

    en.wikipedia.org/wiki/Midpoint

    The nine-point center of a triangle lies at the midpoint between the circumcenter and the orthocenter. These points are all on the Euler line. A midsegment (or midline) of a triangle is a line segment that joins the midpoints of two sides of the triangle. It is parallel to the third side and has a length equal to one half of that third side.