Search results
Results from the WOW.Com Content Network
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
Deeplearning4j can be used via multiple API languages including Java, Scala, Python, Clojure and Kotlin. Its Scala API is called ScalNet. [31] Keras serves as its Python API. [32] And its Clojure wrapper is known as DL4CLJ. [33] The core languages performing the large-scale mathematical operations necessary for deep learning are C, C++ and CUDA C.
Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the objects may vary somewhat in different view points, in many different sizes and scales or even when they are translated or rotated.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Learn to edit; Community portal; ... END OBJECT. END CLASS name. ... Java — D x.property: Python Visual Basic .NET Xojo Windows PowerShell
Pages in category "Object recognition and categorization" The following 33 pages are in this category, out of 33 total. This list may not reflect recent changes .
The messages that flow between computers to request services in a client-server environment can be designed as the linearizations of objects defined by class objects known to both the client and the server. For example, a simple linearized object would consist of a length field, a code point identifying the class, and a data value.
In natural language processing, the key technical direction developed builds on the ability to "understand the labels"—represent the labels in the same semantic space as that of the documents to be classified. This supports the classification of a single example without observing any annotated data, the purest form of zero-shot classification.