Search results
Results from the WOW.Com Content Network
Big data can include structured, unstructured, or combinations of structured and unstructured data. Big data analysis may integrate raw data from multiple sources. The processing of raw data may also involve transformations of unstructured data to structured data. Other possible characteristics of big data are: [41] Exhaustive
Data-intensive computing is intended to address this need. Parallel processing approaches can be generally classified as either compute-intensive, or data-intensive. [6] [7] [8] Compute-intensive is used to describe application programs that are compute-bound. Such applications devote most of their execution time to computational requirements ...
Industrial big data refers to a large amount of diversified time series generated at a high speed by industrial equipment, [1] known as the Internet of things. [2] The term emerged in 2012 along with the concept of "Industry 4.0”, and refers to big data”, popular in information technology marketing, in that data created by industrial equipment might hold more potential business value. [3]
Data analysis is a process for obtaining raw data, and subsequently converting it into information useful for decision-making by users. [1] Data is collected and analyzed to answer questions, test hypotheses, or disprove theories. [11] Statistician John Tukey, defined data analysis in 1961, as:
A data lake is a system or repository of data stored in its natural/raw format, [1] usually object blobs or files. A data lake is usually a single store of data including raw copies of source system data, sensor data, social data etc., [2] and transformed data used for tasks such as reporting, visualization, advanced analytics, and machine ...
Given the fairly static yet voluminous nature of machine-generated data, data owners rely on highly scalable tools to process and analyze the resulting dataset. Almost all machine-generated data is unstructured but then derived into a common structure. [4] Typically, these derived structures contain many data points/columns. With these data ...
Data quality assurance is the process of data profiling to discover inconsistencies and other anomalies in the data, as well as performing data cleansing [17] [18] activities (e.g. removing outliers, missing data interpolation) to improve the data quality.
In this business model, data provides value as a support mechanism or a tool for creating other value propositions, that's why the revenue stream is typically quite a bit lower. [19] In turn, Data as a Service is one of 3 categories of big data business models based on their value propositions and customers: Answers as a Service;