enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Leibniz's notation - Wikipedia

    en.wikipedia.org/wiki/Leibniz's_notation

    Gottfried Wilhelm von Leibniz (1646–1716), German philosopher, mathematician, and namesake of this widely used mathematical notation in calculus.. In calculus, Leibniz's notation, named in honor of the 17th-century German philosopher and mathematician Gottfried Wilhelm Leibniz, uses the symbols dx and dy to represent infinitely small (or infinitesimal) increments of x and y, respectively ...

  3. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    Leibniz's notation for differentiation does not require assigning meaning to symbols such as dx or dy (known as differentials) on their own, and some authors do not attempt to assign these symbols meaning. [1] Leibniz treated these symbols as infinitesimals.

  4. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    The differential was first introduced via an intuitive or heuristic definition by Isaac Newton and furthered by Gottfried Leibniz, who thought of the differential dy as an infinitely small (or infinitesimal) change in the value y of the function, corresponding to an infinitely small change dx in the function's argument x.

  5. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In Newton's notation or the dot notation, a dot is placed over a symbol to represent a time derivative. If y {\displaystyle y} is a function of ⁠ t {\displaystyle t} ⁠ , then the first and second derivatives can be written as y ˙ {\displaystyle {\dot {y}}} and ⁠ y ¨ {\displaystyle {\ddot {y}}} ⁠ , respectively.

  6. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    If y is a function of x, then the differential dy of y is related to dx by the formula =, where dy/dx denotes the derivative of y with respect to x. This formula summarizes the intuitive idea that the derivative of y with respect to x is the limit of the ratio of differences Δy/Δx as Δx becomes infinitesimal.

  7. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]

  8. Differential (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Differential_(mathematics)

    In Leibniz's notation, if x is a variable quantity, then dx denotes an infinitesimal change in the variable x. Thus, if y is a function of x, then the derivative of y with respect to x is often denoted dy/dx, which would otherwise be denoted (in the notation of Newton or Lagrange) ẏ or y ′.

  9. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    Note dx (and dy) can be viewed, at a simple level, as just a convenient notation, which provides a handy mnemonic aid for assisting with manipulations. A formal definition of dx as a differential (infinitesimal) is somewhat advanced.