Search results
Results from the WOW.Com Content Network
Orbital decay is a gradual decrease of the distance between two orbiting bodies at their closest approach (the periapsis) over many orbital periods.These orbiting bodies can be a planet and its satellite, a star and any object orbiting it, or components of any binary system.
Every object in a 2-body ballistic trajectory has a constant specific orbital energy equal to the sum of its specific kinetic and specific potential energy: = = =, where = is the standard gravitational parameter of the massive body with mass , and is the radial distance from its center. As an object in an escape trajectory moves outward, its ...
This enables a single shield to block radiation from both Earth and the Sun, allowing passive cooling of sensitive instruments. Examples include the Wilkinson Microwave Anisotropy Probe and the James Webb Space Telescope. L1, L2, and L3 are unstable orbits[6], meaning that small perturbations will cause the orbiting craft to drift out of the ...
The energy required to reach Earth orbital velocity at an altitude of 600 km (370 mi) is about 36 MJ/kg, which is six times the energy needed merely to climb to the corresponding altitude. [4] Spacecraft with a perigee below about 2,000 km (1,200 mi) are subject to drag from the Earth's atmosphere, [5] which decreases the orbital altitude. The ...
The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg. Compared with the potential energy at the surface, which is −62.6 MJ/kg., the extra potential energy is 3.4 MJ/kg, and the total extra energy is 33.0 MJ/kg.
For a given semi-major axis the specific orbital energy is independent of the eccentricity. Using the virial theorem to find: the time-average of the specific potential energy is equal to −2ε the time-average of r −1 is a −1; the time-average of the specific kinetic energy is equal to ε
The green path in this image is an example of a parabolic trajectory. A parabolic trajectory is depicted in the bottom-left quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the parabolic trajectory is shown in red. The height of the kinetic energy decreases ...
A highly elliptical orbit (HEO) is an elliptic orbit with high eccentricity, usually referring to one around Earth.Examples of inclined HEO orbits include Molniya orbits, named after the Molniya Soviet communication satellites which used them, and Tundra orbits.