Search results
Results from the WOW.Com Content Network
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.
In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on.
The three long-lived nuclides are uranium-238 (half-life 4.5 billion years), uranium-235 (half-life 700 million years) and thorium-232 (half-life 14 billion years). The fourth chain has no such long-lasting bottleneck nuclide near the top, so almost all of the nuclides in that chain have long since decayed down to just before the end: bismuth-209.
At least 3,300 nuclides have been experimentally characterized [1] (see List of radioactive nuclides by half-life for the nuclides with decay half-lives less than one hour). A nuclide is defined conventionally as an experimentally examined bound collection of protons and neutrons that either is stable or has an observed decay mode .
The half-life, t 1/2, is the time taken for the activity of a given amount of a radioactive substance to decay to half of its initial value. The decay constant , λ " lambda ", the reciprocal of the mean lifetime (in s −1 ), sometimes referred to as simply decay rate .
Considering all decay modes, various models indicate a shift of the center of the island (i.e., the longest-living nuclide) from 298 Fl to a lower atomic number, and competition between alpha decay and spontaneous fission in these nuclides; [83] these include 100-year half-lives for 291 Cn and 293 Cn, [55] [78] a 1000-year half-life for 296 Cn ...
The longest-lived radioisotope is 73 As with a half-life of 80 days. List of isotopes. Nuclide [n 1] Z N Isotopic mass [4] [n 2] [n 3] Half-life [1] Decay mode [1]
There are no stable nuclides with mass numbers 5 or 8. There are stable nuclides with all other mass numbers up to 208 with the exceptions of 147 and 151, which are represented by the very long-lived samarium-147 and europium-151. (Bismuth-209 was found to be radioactive in 2003, but with a half-life of 2.01 × 10 19 years.)