Search results
Results from the WOW.Com Content Network
Informally, specifying a geographic location usually means giving the location's latitude and longitude. The numerical values for latitude and longitude can occur in a number of different units or formats: [2] sexagesimal degree: degrees, minutes, and seconds : 40° 26′ 46″ N 79° 58′ 56″ W
Longitude is given as an angular measurement with 0° at the Prime Meridian, ranging from −180° westward to +180° eastward. The Greek letter λ (lambda) [38] [39] is used to denote the location of a place on Earth east or west of the Prime Meridian. Each degree of longitude is sub-divided into 60 minutes, each of which is divided into 60 ...
In setting up a coordinate system, a static terrestrial point called the IERS Reference Pole, or IRP, is used as the origin; the x-axis is in the direction of IRM, the IERS Reference Meridian; the y-axis is in the direction 90 degrees West longitude. x and y are the coordinates of the CEP relative to the IRP.
The reverse conversion is harder: given X-Y-Z can immediately get longitude, but no closed formula for latitude and height exists. See "Geodetic system." Using Bowring's formula in 1976 Survey Review the first iteration gives latitude correct within 10-11 degree as long as the point is within 10,000 meters above or 5,000 meters below the ellipsoid.
Specifying a location means specifying the zone and the x, y coordinate in that plane. The projection from spheroid to a UTM zone is some parameterization of the transverse Mercator projection. The parameters vary by nation or region or mapping system. Most zones in UTM span 6 degrees of longitude, and each has a designated central meridian ...
A geographic coordinate system (GCS) is a spherical or geodetic coordinate system for measuring and communicating positions directly on Earth as latitude and longitude. [1] It is the simplest, oldest and most widely used type of the various spatial reference systems that are in use, and forms the basis for most others.
Likewise, (x, −y) are the coordinates of its reflection across the first coordinate axis (the x-axis). In more generality, reflection across a line through the origin making an angle with the x-axis, is equivalent to replacing every point with coordinates (x, y) by the point with coordinates (x′,y′), where
A projected coordinate system – also called a projected coordinate reference system, planar coordinate system, or grid reference system – is a type of spatial reference system that represents locations on Earth using Cartesian coordinates (x, y) on a planar surface created by a particular map projection. [1]