Search results
Results from the WOW.Com Content Network
In organic chemistry, a carbanion is an anion in which carbon is negatively charged. [1] [failed verification] ... Instead of residing in a hybrid orbital, the ...
In chemistry, orbital hybridisation (or hybridization) is the concept of mixing atomic orbitals to form new hybrid orbitals (with different energies, shapes, etc., than the component atomic orbitals) suitable for the pairing of electrons to form chemical bonds in valence bond theory.
For instance, the lone pairs of water are usually treated as two equivalent sp x hybrid orbitals, while the corresponding "nonbonding" orbitals of carbenes are generally treated as a filled σ(out) orbital and an unfilled pure p orbital, even though the lone pairs of water could be described analogously by filled σ(out) and p orbitals (for ...
Although classical carbenium ions have a structure that corresponds to a non-bridging Lewis structure, it is important to note that donation of electron density from neighboring C–H or C–C bonds into the "empty" p orbital, known as hyperconjugation, is still an important stabilizing factor, and these bonds have a tendency to "lean" towards ...
Bent's rule can be extended to rationalize the hybridization of nonbonding orbitals as well. On the one hand, a lone pair (an occupied nonbonding orbital) can be thought of as the limiting case of an electropositive substituent, with electron density completely polarized towards the central atom.
Hyperconjugation can be used to rationalize a variety of chemical phenomena, including the anomeric effect, the gauche effect, the rotational barrier of ethane, the beta-silicon effect, the vibrational frequency of exocyclic carbonyl groups, and the relative stability of substituted carbocations and substituted carbon centred radicals, and the thermodynamic Zaitsev's rule for alkene stability.
In organic chemistry, methenium (also called methylium, carbenium, [2] methyl cation, or protonated methylene) is a cation with the formula CH + 3.It can be viewed as a methylene radical (: CH
Bredt's rule also applies to carbocations and, to a lesser degree, free radicals, because these intermediates also prefer a planar geometry with 120° angles and sp 2 hybridization. It generally does not apply to hypervalent heteroatoms, although they are commonly written with a formal double bond. [6]