Ads
related to: rational value rational purposes theorem meaning in geometry worksheet
Search results
Results from the WOW.Com Content Network
The theorem extends to the other trigonometric functions as well. [2] For rational values of θ, the only rational values of the sine or cosine are 0, ±1/2, and ±1; the only rational values of the secant or cosecant are ±1 and ±2; and the only rational values of the tangent or cotangent are 0 and ±1. [3]
In mathematics, two non-zero real numbers a and b are said to be commensurable if their ratio a / b is a rational number; otherwise a and b are called incommensurable. (Recall that a rational number is one that is equivalent to the ratio of two integers.) There is a more general notion of commensurability in group theory.
Such complete intersections have important applications in geometry and number theory, because they typically admit rational points, an elementary case of which is the Chevalley–Warning theorem. Fano varieties provide an abstract generalization of these basic examples for which rationality questions are often still tractable.
In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point.
In 1946, Stanislaw Ulam asked whether there exists a set of points at rational distances from each other that forms a dense subset of the Euclidean plane. [2] While the answer to this question is still open, József Solymosi and Frank de Zeeuw showed that the only irreducible algebraic curves that contain infinitely many points at rational distances are lines and circles. [3]
In algebraic geometry, a branch of mathematics, a rational surface is a surface birationally equivalent to the projective plane, or in other words a rational variety of dimension two. Rational surfaces are the simplest of the 10 or so classes of surface in the Enriques–Kodaira classification of complex surfaces, and were the first surfaces to ...
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
The first problem was to know how well a real number can be approximated by rational numbers. For this problem, a rational number p/q is a "good" approximation of a real number α if the absolute value of the difference between p/q and α may not decrease if p/q is replaced by another
Ads
related to: rational value rational purposes theorem meaning in geometry worksheet