enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    Underfitting occurs when a mathematical model cannot adequately capture the underlying structure of the data. An under-fitted model is a model where some parameters or terms that would appear in a correctly specified model are missing. [2] Underfitting would occur, for example, when fitting a linear model to nonlinear data.

  3. File:Overfitting on Training Set Data.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Overfitting_on...

    English: This image represents the problem of overfitting in machine learning. The red dots represent training set data. The red dots represent training set data. The green line represents the true functional relationship, while the red line shows the learned function, which has fallen victim to overfitting.

  4. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    Download as PDF; Printable version; In other projects Wikidata item; Appearance. move to sidebar hide ... and diagnosing problems such as overfitting (or underfitting).

  5. Data augmentation - Wikipedia

    en.wikipedia.org/wiki/Data_augmentation

    Data augmentation is a statistical technique which allows maximum likelihood estimation from incomplete data. [1] [2] Data augmentation has important applications in Bayesian analysis, [3] and the technique is widely used in machine learning to reduce overfitting when training machine learning models, [4] achieved by training models on several slightly-modified copies of existing data.

  6. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Bias–variance_tradeoff

    [14] [15] For example, boosting combines many "weak" (high bias) models in an ensemble that has lower bias than the individual models, while bagging combines "strong" learners in a way that reduces their variance. Model validation methods such as cross-validation (statistics) can be used to tune models so as to optimize the trade-off.

  7. Elbow method (clustering) - Wikipedia

    en.wikipedia.org/wiki/Elbow_method_(clustering)

    Example of the typical "elbow" pattern used for choosing the number of clusters even emerging on uniform data. Even on uniform random data (with no meaningful clusters) the curve follows approximately the ratio 1/k where k is the number of clusters parameter, causing users to see an "elbow" to mistakenly choose some "optimal" number of clusters.

  8. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.

  9. Multidimensional scaling - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_scaling

    Interpretability of the MDS solution is often important, and lower dimensional solutions will typically be easier to interpret and visualize. However, dimension selection is also an issue of balancing underfitting and overfitting. Lower dimensional solutions may underfit by leaving out important dimensions of the dissimilarity data.