Search results
Results from the WOW.Com Content Network
Using congruent triangles, one can prove that the rhombus is symmetric across each of these diagonals. It follows that any rhombus has the following properties: Opposite angles of a rhombus have equal measure. The two diagonals of a rhombus are perpendicular; that is, a rhombus is an orthodiagonal quadrilateral. Its diagonals bisect opposite ...
An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...
The diagonals bisect each other. One pair of opposite sides is parallel and equal in length. Adjacent angles are supplementary. Each diagonal divides the quadrilateral into two congruent triangles. The sum of the squares of the sides equals the sum of the squares of the diagonals.
If the five diagonals are rational (the case called a Brahmagupta pentagon by Sastry (2005)), then the radius of its circumscribed circle must also be rational, and the pentagon may be partitioned into three Heronian triangles by cutting it along any two non-crossing diagonals, or into five Heronian triangles by cutting it along the five radii ...
Let φ be the golden ratio.The 12 points given by (0, ±1, ±φ) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the 8 points (±1, ±1, ±1) together with the 12 points (0, ±φ, ± 1 / φ ) and cyclic permutations of these coordinates.
Denote the segments that the diagonal intersection P divides diagonal AC into as AP = p 1 and PC = p 2, and similarly P divides diagonal BD into segments BP = q 1 and PD = q 2. Then the quadrilateral is tangential if and only if any one of the following equalities are true: [30]
One diagonal crosses the midpoint of the other diagonal at a right angle, forming its perpendicular bisector. [9] (In the concave case, the line through one of the diagonals bisects the other.) One diagonal is a line of symmetry. It divides the quadrilateral into two congruent triangles that are mirror images of each other. [7]
The ratio of the area of the envelope of area bisectors to the area of the triangle is invariant for all triangles, and equals (), i.e. 0.019860... or less than 2%. A cleaver of a triangle is a line segment that bisects the perimeter of the triangle and has one endpoint at the midpoint of one of the three sides.