Search results
Results from the WOW.Com Content Network
The simplest one is Naive Bayes classifier. [2] Using the language of graphical models, the Naive Bayes classifier is described by the equation below. The basic idea (or assumption) of this model is that each category has its own distribution over the codebooks, and that the distributions of each category are observably different.
Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.
In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition
a Bayes classifier, one that always chooses the class of highest posterior probability in case this posterior distribution is modelled by assuming the observables are independent, it is a naive Bayes classifier
Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample x a class label ลท: ^ = The samples come from some set X (e.g., the set of all documents, or the set of all images), while the class labels form a finite set Y defined prior to training.
PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. It can be used for Bayesian statistical modeling and probabilistic machine learning.
Naive Bayes is a successful classifier based upon the principle of maximum a posteriori (MAP). This approach is naturally extensible to the case of having more than two classes, and was shown to perform well in spite of the underlying simplifying assumption of conditional independence.
Naive Bayes classifier with multinomial or multivariate Bernoulli event models. The second set of methods includes discriminative models, which attempt to maximize the quality of the output on a training set. Additional terms in the training cost function can easily perform regularization of the final model. Examples of discriminative training ...