enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equilateral pentagon - Wikipedia

    en.wikipedia.org/wiki/Equilateral_pentagon

    There are two infinite families of equilateral convex pentagons that tile the plane, one having two adjacent supplementary angles and the other having two non-adjacent supplementary angles. Some of those pentagons can tile in more than one way, and there is one sporadic example of an equilateral pentagon that can tile the plane but does not ...

  3. List of two-dimensional geometric shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_two-dimensional...

    This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.

  4. Pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_tiling

    It is possible to divide an equilateral triangle into three congruent non-convex pentagons, meeting at the center of the triangle, and to tile the plane with the resulting three-pentagon unit. [21] A similar method can be used to subdivide squares into four congruent non-convex pentagons, or regular hexagons into six congruent non-convex ...

  5. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Alternatively, the area can be calculated by dividing the kite into two congruent triangles and applying the SAS formula for their area. If a {\displaystyle a} and b {\displaystyle b} are the lengths of two sides of the kite, and θ {\displaystyle \theta } is the angle between, then the area is [ 26 ] A = a b ⋅ sin ⁡ θ . {\displaystyle ...

  6. Reuleaux triangle - Wikipedia

    en.wikipedia.org/wiki/Reuleaux_triangle

    The subset of the Reuleaux triangle consisting of points belonging to three or more diameters is the interior of the larger of these two triangles; it has a larger area than the set of three-diameter points of any other curve of constant width. [16] Centrally symmetric shapes inside and outside a Reuleaux triangle, used to measure its asymmetry

  7. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Specifying two sides and an adjacent angle (SSA), however, can yield two distinct possible triangles unless the angle specified is a right angle. Triangles are congruent if they have all three sides equal (SSS), two sides and the angle between them equal (SAS), or two angles and a side equal (ASA) (Book I, propositions 4, 8, and 26).

  8. Digon - Wikipedia

    en.wikipedia.org/wiki/Digon

    A compound of two "line segment" digons, as the two possible alternations of a square (note the vertex arrangement). The apeirogonal hosohedron , containing infinitely narrow digons. Any straight-sided digon is regular even though it is degenerate, because its two edges are the same length and its two angles are equal (both being zero degrees).

  9. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.