enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Index notation - Wikipedia

    en.wikipedia.org/wiki/Index_notation

    A vector treated as an array of numbers by writing as a row vector or column vector (whichever is used depends on convenience or context): = (), = Index notation allows indication of the elements of the array by simply writing a i, where the index i is known to run from 1 to n, because of n-dimensions. [1]

  3. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    It may be referred to as scientific form or standard index form, or standard form in the United Kingdom. This base ten notation is commonly used by scientists, mathematicians, and engineers, in part because it can simplify certain arithmetic operations. On scientific calculators, it is usually known as "SCI" display mode.

  4. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    Concretely, in the case where the vector space has an inner product, in matrix notation these can be thought of as row vectors, which give a number when applied to column vectors. We denote this by V ∗ := Hom ( V , K ) {\displaystyle V^{*}:={\text{Hom}}(V,K)} , so that α ∈ V ∗ {\displaystyle \alpha \in V^{*}} is a linear map α : V → K ...

  5. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    The integer n is called the index or degree, and the number x of which the root is taken is the radicand. A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction.

  6. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    In index-free tensor notation, the Levi-Civita symbol is replaced by the concept of the Hodge dual. [citation needed] Summation symbols can be eliminated by using Einstein notation, where an index repeated between two or more terms indicates summation over that index. For example,

  7. Christoffel symbols - Wikipedia

    en.wikipedia.org/wiki/Christoffel_symbols

    The index-less transformation properties of a tensor are given by pullbacks for covariant indices, and pushforwards for contravariant indices. The article on covariant derivatives provides additional discussion of the correspondence between index-free notation and indexed notation.

  8. Einstein notation - Wikipedia

    en.wikipedia.org/wiki/Einstein_notation

    An index that is summed over is a summation index, in this case "i ". It is also called a dummy index since any symbol can replace "i " without changing the meaning of the expression (provided that it does not collide with other index symbols in the same term). An index that is not summed over is a free index and should appear only once per ...

  9. Multi-index notation - Wikipedia

    en.wikipedia.org/wiki/Multi-index_notation

    Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.