Search results
Results from the WOW.Com Content Network
Multilevel security or multiple levels of security (MLS) is the application of a computer system to process information with incompatible classifications (i.e., at different security levels), permit access by users with different security clearances and needs-to-know, and prevent users from obtaining access to information for which they lack authorization.
1975-2013, R 0 RS, R 1 RS, R 2 RS, R 3 RS, R 4 RS, R 5 RS, R 6 RS, R 7 RS Small Edition [42] [43] Seed7: Application, general, scripting, web Yes Yes No No Yes Yes Multi-paradigm, extensible, structured No Simula: Education, general Yes Yes No No No No discrete event simulation, multi-threaded (quasi-parallel) program execution Yes 1968 Small Basic
Python. The use of the triple-quotes to comment-out lines of source, does not actually form a comment. [19] The enclosed text becomes a string literal, which Python usually ignores (except when it is the first statement in the body of a module, class or function; see docstring). Elixir
CLPython is an implementation of the Python programming language written in Common Lisp. This project allow to call Lisp functions from Python and Python functions from Lisp. Licensed under LGPL. CLPython was started in 2006, but as of 2013, it was not actively developed and the mailing list was closed. [1]
The Common Language Infrastructure (CLI) is an open specification and technical standard originally developed by Microsoft and standardized by ISO/IEC (ISO/IEC 23271) and Ecma International (ECMA 335) [1] [2] that describes executable code and a runtime environment that allows multiple high-level languages to be used on different computer platforms without being rewritten for specific ...
The term closure is often used as a synonym for anonymous function, though strictly, an anonymous function is a function literal without a name, while a closure is an instance of a function, a value, whose non-local variables have been bound either to values or to storage locations (depending on the language; see the lexical environment section below).
Multi-task learning (MTL) is a subfield of machine learning in which multiple learning tasks are solved at the same time, while exploiting commonalities and differences across tasks. This can result in improved learning efficiency and prediction accuracy for the task-specific models, when compared to training the models separately.
ML.NET is a free software machine learning library for the C# and F# programming languages. [4] [5] [6] It also supports Python models when used together with NimbusML.The preview release of ML.NET included transforms for feature engineering like n-gram creation, and learners to handle binary classification, multi-class classification, and regression tasks. [7]