Search results
Results from the WOW.Com Content Network
DWI is most applicable when the tissue of interest is dominated by isotropic water movement e.g. grey matter in the cerebral cortex and major brain nuclei, or in the body—where the diffusion rate appears to be the same when measured along any axis. However, DWI also remains sensitive to T1 and T2 relaxation.
The first study of the human brain at 3.0 T was published in 1994, [13] and in 1998 at 8 T. [14] Studies of the human brain have been performed at 9.4 T (2006) [15] and up to 10.5 T (2019). [16] Paul Lauterbur and Sir Peter Mansfield were awarded the 2003 Nobel Prize in Physiology or Medicine for their discoveries concerning MRI.
Resting state fMRI (rs-fMRI or R-fMRI), also referred to as task-independent fMRI or task-free fMRI, is a method of functional magnetic resonance imaging (fMRI) that is used in brain mapping to evaluate regional interactions that occur in a resting or task-negative state, when an explicit task is not being performed.
In the 1990 case Michigan State Department of Police vs Sitz, the Supreme Court held that DWI checkpoints are reasonable seizures because their purpose is to promote public safety. State v. Wagner
Diffuse axonal injury after a motorcycle accident. MRI after 3 days: on T1-weighted images the injury is barely visible. On the FLAIR, DWI and T2*-weighted images a small bleed is identifiable. DAI is difficult to detect since it does not show up well on CT scans or with other macroscopic imaging techniques, though it shows up microscopically. [9]
A number of online neuroscience databases are available which provide information regarding gene expression, neurons, macroscopic brain structure, and neurological or psychiatric disorders. Some databases contain descriptive and numerical data, some to brain function, others offer access to 'raw' imaging data, such as postmortem brain sections ...
Ex-president will be attending multiple trials in 2024 while campaigning for the White House
Susceptibility weighted imaging (SWI), originally called BOLD venographic imaging, is an MRI sequence that is exquisitely sensitive to venous blood, hemorrhage and iron storage. SWI uses a fully flow compensated, long echo, gradient recalled echo (GRE) pulse sequence to acquire images.