enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov's principle - Wikipedia

    en.wikipedia.org/wiki/Markov's_principle

    Markov's principle (also known as the Leningrad principle [1]), named after Andrey Markov Jr, is a conditional existence statement for which there are many equivalent formulations, as discussed below. The principle is logically valid classically, but not in intuitionistic constructive mathematics. However, many particular instances of it are ...

  3. File:Markov random field example.png - Wikipedia

    en.wikipedia.org/wiki/File:Markov_random_field...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate

  4. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model. A Markov random field extends this property to two or more dimensions or to random variables defined for an interconnected network of items. [1] An example of a model for such a field is the Ising model.

  5. Markov random field - Wikipedia

    en.wikipedia.org/wiki/Markov_random_field

    In this example: A depends on B and D. B depends on A and D. D depends on A, B, and E. E depends on D and C. C depends on E. In the domain of physics and probability, a Markov random field (MRF), Markov network or undirected graphical model is a set of random variables having a Markov property described by an undirected graph.

  6. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    For example, a series of simple observations, such as a person's location in a room, can be interpreted to determine more complex information, such as in what task or activity the person is performing. Two kinds of Hierarchical Markov Models are the Hierarchical hidden Markov model [2] and the Abstract Hidden Markov Model. [3]

  7. Markov's inequality - Wikipedia

    en.wikipedia.org/wiki/Markov's_inequality

    In probability theory, Markov's inequality gives an upper bound on the probability that a non-negative random variable is greater than or equal to some positive constant. Markov's inequality is tight in the sense that for each chosen positive constant, there exists a random variable such that the inequality is in fact an equality.

  8. Causal Markov condition - Wikipedia

    en.wikipedia.org/wiki/Causal_Markov_condition

    The related Causal Markov (CM) condition states that, conditional on the set of all its direct causes, a node is independent of all variables which are not effects or direct causes of that node. [3] In the event that the structure of a Bayesian network accurately depicts causality , the two conditions are equivalent.

  9. Markov algorithm - Wikipedia

    en.wikipedia.org/wiki/Markov_algorithm

    In theoretical computer science, a Markov algorithm is a string rewriting system that uses grammar-like rules to operate on strings of symbols. Markov algorithms have been shown to be Turing-complete , which means that they are suitable as a general model of computation and can represent any mathematical expression from its simple notation.