Search results
Results from the WOW.Com Content Network
Sign bit: 1 bit; Exponent: 11 bits; Significand precision: 53 bits (52 explicitly stored) The sign bit determines the sign of the number (including when this number is zero, which is signed). The exponent field is an 11-bit unsigned integer from 0 to 2047, in biased form: an exponent value of 1023 represents the actual zero. Exponents range ...
In 1946, Arthur Burks used the terms mantissa and characteristic to describe the two parts of a floating-point number (Burks [11] et al.) by analogy with the then-prevalent common logarithm tables: the characteristic is the integer part of the logarithm (i.e. the exponent), and the mantissa is the fractional part.
The way in which the significand (including its sign) and exponent are stored in a computer is implementation-dependent. The common IEEE formats are described in detail later and elsewhere, but as an example, in the binary single-precision (32-bit) floating-point representation, p = 24 {\displaystyle p=24} , and so the significand is a string ...
The encoding scheme for these binary interchange formats is the same as that of IEEE 754-1985: a sign bit, followed by w exponent bits that describe the exponent offset by a bias, and p − 1 bits that describe the significand. The width of the exponent field for a k-bit format is computed as w = round(4 log 2 (k)) − 13. The existing 64- and ...
The sign bit determines the sign of the number, which is the sign of the significand as well. "1" stands for negative. The exponent field is an 8-bit unsigned integer from 0 to 255, in biased form: a value of 127 represents the actual exponent zero.
Now we can read off the fraction and the exponent: the fraction is .01 2 and the exponent is −3. As illustrated in the pictures, the three fields in the IEEE 754 representation of this number are: sign = 0, because the number is positive. (1 indicates negative.) biased exponent = −3 + the "bias".
These examples are given in bit representation, in hexadecimal and binary, of the floating-point value. This includes the sign, (biased) exponent, and significand. 3f80 = 0 01111111 0000000 = 1 c000 = 1 10000000 0000000 = −2
Several earlier 16-bit floating point formats have existed including that of Hitachi's HD61810 DSP of 1982 (a 4-bit exponent and a 12-bit mantissa), [2] Thomas J. Scott's WIF of 1991 (5 exponent bits, 10 mantissa bits) [3] and the 3dfx Voodoo Graphics processor of 1995 (same as Hitachi). [4]