Search results
Results from the WOW.Com Content Network
In mathematics, a definite quadratic form is a quadratic form over some real vector space V that has the same sign (always positive or always negative) for every non-zero vector of V. According to that sign, the quadratic form is called positive-definite or negative-definite .
The pair (V, Q) consisting of a finite-dimensional vector space V over K and a quadratic map Q from V to K is called a quadratic space, and B as defined here is the associated symmetric bilinear form of Q. The notion of a quadratic space is a coordinate-free version of the notion of quadratic form.
The square root of a univariate quadratic function gives rise to one of the four conic sections, almost always either to an ellipse or to a hyperbola. If a > 0 , {\displaystyle a>0,} then the equation y = ± a x 2 + b x + c {\displaystyle y=\pm {\sqrt {ax^{2}+bx+c}}} describes a hyperbola, as can be seen by squaring both sides.
Among bilinear forms, the symmetric ones are important because they are the ones for which the vector space admits a particularly simple kind of basis known as an orthogonal basis (at least when the characteristic of the field is not 2). Given a symmetric bilinear form B, the function q(x) = B(x, x) is the associated quadratic form on the ...
A general quadratic form on real variables , …, can always be written as where is the column vector with those variables, and is a symmetric real matrix. Therefore, the matrix being positive definite means that f {\displaystyle f} has a unique minimum (zero) when x {\displaystyle \mathbf {x} } is zero, and is strictly positive for any other x ...
An intuitive way to understand an ε-quadratic form is to think of it as a quadratic refinement of its associated ε-symmetric form. For instance, in defining a Clifford algebra over a general field or ring, one quotients the tensor algebra by relations coming from the symmetric form and the quadratic form: vw + wv = 2 B ( v , w ) and v 2 = Q ...
In mathematics, the signature (v, p, r) [clarification needed] of a metric tensor g (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix g ab of the metric tensor with respect to a basis.
A quadratic equation always has two roots, if complex roots are included and a double root is counted for two. A quadratic equation can be factored into an equivalent equation [ 3 ] a x 2 + b x + c = a ( x − r ) ( x − s ) = 0 {\displaystyle ax^{2}+bx+c=a(x-r)(x-s)=0} where r and s are the solutions for x .