Search results
Results from the WOW.Com Content Network
The reciprocal function: y = 1/x. For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a ...
In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo of an odd prime number p: its value at a (nonzero) quadratic residue mod p is 1 and at a non-quadratic residue (non-residue) is −1. Its value at zero is 0.
The multiplicative inverse x ≡ a −1 (mod m) may be efficiently computed by solving Bézout's equation a x + m y = 1 for x, y, by using the Extended Euclidean algorithm. In particular, if p is a prime number, then a is coprime with p for every a such that 0 < a < p; thus a multiplicative inverse exists for all a that is not congruent to zero ...
A modular multiplicative inverse of a modulo m can be found by using the extended Euclidean algorithm. The Euclidean algorithm determines the greatest common divisor (gcd) of two integers, say a and m. If a has a multiplicative inverse modulo m, this gcd must be 1. The last of several equations produced by the algorithm may be solved for this gcd.
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4.The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1.
Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: That is: c = b e mod m = d − e mod m , where e < 0 and b ⋅ d ≡ 1 (mod m ) .
The function f has a Dirichlet inverse if and only if f(1) ≠ 0. The Dirichlet inverse of a multiplicative function is again multiplicative. The Dirichlet inverse of a Dirichlet convolution is the convolution of the inverses of each function: () =.
The reciprocal function f(x) = x −1 where for every x except 0, f(x) represents its multiplicative inverse. Exponentiation of a non‐zero real number can be extended to negative integers, where raising a number to the power −1 has the same effect as taking its multiplicative inverse: x −1 = 1 / x .