enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backtracking - Wikipedia

    en.wikipedia.org/wiki/Backtracking

    The backtracking algorithm reduces the problem to the call backtrack(P, root(P)), where backtrack is the following recursive procedure: procedure backtrack(P, c) is if reject(P, c) then return if accept(P, c) then output(P, c) s ← first(P, c) while s ≠ NULL do backtrack(P, s) s ← next(P, s)

  3. Dancing Links - Wikipedia

    en.wikipedia.org/wiki/Dancing_Links

    It is particularly useful for efficiently implementing backtracking algorithms, such as Knuth's Algorithm X for the exact cover problem. [1] Algorithm X is a recursive , nondeterministic , depth-first , backtracking algorithm that finds all solutions to the exact cover problem.

  4. Knuth's Algorithm X - Wikipedia

    en.wikipedia.org/wiki/Knuth's_Algorithm_X

    Backtracking is the process of traversing the tree in preorder, depth first. Any systematic rule for choosing column c in this procedure will find all solutions, but some rules work much better than others. To reduce the number of iterations, Knuth suggests that the column-choosing algorithm select a column with the smallest number of 1s in it.

  5. Backjumping - Wikipedia

    en.wikipedia.org/wiki/Backjumping

    When further backtracking or backjumping from the node, the variable of the node is removed from this set, and the set is sent to the node that is the destination of backtracking or backjumping. This algorithm works because the set maintained in a node collects all variables that are relevant to prove unsatisfiability in the leaves that are ...

  6. Sudoku solving algorithms - Wikipedia

    en.wikipedia.org/wiki/Sudoku_solving_algorithms

    Some hobbyists have developed computer programs that will solve Sudoku puzzles using a backtracking algorithm, which is a type of brute force search. [3] Backtracking is a depth-first search (in contrast to a breadth-first search), because it will completely explore one branch to a possible solution before moving to another branch.

  7. Maze generation algorithm - Wikipedia

    en.wikipedia.org/wiki/Maze_generation_algorithm

    As given above this algorithm involves deep recursion which may cause stack overflow issues on some computer architectures. The algorithm can be rearranged into a loop by storing backtracking information in the maze itself. This also provides a quick way to display a solution, by starting at any given point and backtracking to the beginning.

  8. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    The recursive implementation will visit the nodes from the example graph in the following order: A, B, D, F, E, C, G. The non-recursive implementation will visit the nodes as: A, E, F, B, D, C, G. The non-recursive implementation is similar to breadth-first search but differs from it in two ways: it uses a stack instead of a queue, and

  9. DPLL algorithm - Wikipedia

    en.wikipedia.org/wiki/DPLL_algorithm

    The basic backtracking algorithm runs by choosing a literal, assigning a truth value to it, simplifying the formula and then recursively checking if the simplified formula is satisfiable; if this is the case, the original formula is satisfiable; otherwise, the same recursive check is done assuming the opposite truth value.