Search results
Results from the WOW.Com Content Network
Pump Characteristic curve; the head produced reduces with the discharge of the pump. Pump curves are quite useful in the pump selection, testing, operation and maintenance. Pump performance curve is a graph of differential head against the operating flow rate. They specify performance and efficiency characteristics.
P&IDs are originally drawn up at the design stage from a combination of process flow sheet data, the mechanical process equipment design, and the instrumentation engineering design. During the design stage, the diagram also provides the basis for the development of system control schemes, allowing for further safety and operational ...
A process to perform a water flow test is explained in the model fire codes as published by NFPA (National Fire Protection Association). If a water supply source is considered weak compared to what is required by the sprinkler system design hydraulic calculation, the water pressure can be boosted by means of a fire pump.
On Earth, additional height of fresh water adds a static pressure of about 9.8 kPa per meter (0.098 bar/m) or 0.433 psi per foot of water column height. The static head of a pump is the maximum height (pressure) it can deliver. The capability of the pump at a certain RPM can be read from its Q-H curve (flow vs. height).
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.
Stalling is the separation of flow from the compressor blade surface as shown in the Figure 6. At low flow rates the angle of attack increases over the critical or maximum angle that the aerodynamic profile can sustain, and due to this there occurs the flow separation on the suction side of the blades which is known as positive stalling. If the ...
This depth is converted to a flow rate according to a theoretical formula of the form = where is the flow rate, is a constant, is the water level, and is an exponent which varies with the device used; or it is converted according to empirically derived level/flow data points (a "flow curve"). The flow rate can then be integrated over time into ...