enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chemical kinetics - Wikipedia

    en.wikipedia.org/wiki/Chemical_kinetics

    Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is different from chemical thermodynamics, which deals with the direction in which a reaction occurs but in itself tells nothing about its rate.

  3. Law of mass action - Wikipedia

    en.wikipedia.org/wiki/Law_of_mass_action

    In their first paper, [6] Guldberg and Waage suggested that in a reaction such as A + B ↽ − − ⇀ A ′ + B ′ {\displaystyle {\ce {A + B <=> A' + B'}}} the "chemical affinity" or "reaction force" between A and B did not just depend on the chemical nature of the reactants, as had previously been supposed, but also depended on the amount ...

  4. Reaction rate - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate

    Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]

  5. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    A common form for the rate equation is a power law: [6] = [] [] The constant ⁠ ⁠ is called the rate constant.The exponents, which can be fractional, [6] are called partial orders of reaction and their sum is the overall order of reaction.

  6. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  7. Catalysis - Wikipedia

    en.wikipedia.org/wiki/Catalysis

    An illustrative example is the effect of catalysts to speed the decomposition of hydrogen peroxide into water and oxygen: . 2 H 2 O 2 → 2 H 2 O + O 2. This reaction proceeds because the reaction products are more stable than the starting compound, but this decomposition is so slow that hydrogen peroxide solutions are commercially available.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Chemical reaction - Wikipedia

    en.wikipedia.org/wiki/Chemical_reaction

    The forward and reverse reactions are competing with each other and differ in reaction rates. These rates depend on the concentration and therefore change with the time of the reaction: the reverse rate gradually increases and becomes equal to the rate of the forward reaction, establishing the so-called chemical equilibrium.