enow.com Web Search

  1. Ad

    related to: linear quadratic regulator example equation with solution

Search results

  1. Results from the WOW.Com Content Network
  2. Linear–quadratic regulator - Wikipedia

    en.wikipedia.org/wiki/Linearquadratic_regulator

    One of the main results in the theory is that the solution is provided by the linearquadratic regulator (LQR), a feedback controller whose equations are given below. LQR controllers possess inherent robustness with guaranteed gain and phase margin , [ 1 ] and they also are part of the solution to the LQG (linearquadratic–Gaussian) problem .

  3. Linear–quadratic–Gaussian control - Wikipedia

    en.wikipedia.org/wiki/Linearquadratic...

    This control law which is known as the LQG controller, is unique and it is simply a combination of a Kalman filter (a linearquadratic state estimator (LQE)) together with a linearquadratic regulator (LQR). The separation principle states that the state estimator and the state feedback can be designed independently.

  4. Algebraic Riccati equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_Riccati_equation

    With multiple state variables and multiple control variables, the Riccati equation will be a matrix equation. The algebraic Riccati equation determines the solution of the infinite-horizon time-invariant Linear-Quadratic Regulator problem (LQR) as well as that of the infinite horizon time-invariant Linear-Quadratic-Gaussian control problem (LQG

  5. Linear-quadratic regulator rapidly exploring random tree

    en.wikipedia.org/wiki/Linear-quadratic_regulator...

    A set of differential equations forms a physics engine which maps the control input to the state space of the system. The forward model is able to simulate the given domain. For example, if the user pushes a cart to the left, a pendulum mounted on the cart will react with a motion. The exact force is determined by newton's laws of motion.

  6. Optimal control - Wikipedia

    en.wikipedia.org/wiki/Optimal_control

    A particular form of the LQ problem that arises in many control system problems is that of the linear quadratic regulator (LQR) where all of the matrices (i.e., , , , and ) are constant, the initial time is arbitrarily set to zero, and the terminal time is taken in the limit (this last assumption is what is known as infinite horizon). The LQR ...

  7. Kalman filter - Wikipedia

    en.wikipedia.org/wiki/Kalman_filter

    The Kalman filter, the linear-quadratic regulator, and the linearquadratic–Gaussian controller are solutions to what arguably are the most fundamental problems of control theory. In most applications, the internal state is much larger (has more degrees of freedom ) than the few "observable" parameters which are measured.

  8. Riccati equation - Wikipedia

    en.wikipedia.org/wiki/Riccati_equation

    More generally, the term Riccati equation is used to refer to matrix equations with an analogous quadratic term, which occur in both continuous-time and discrete-time linear-quadratic-Gaussian control. The steady-state (non-dynamic) version of these is referred to as the algebraic Riccati equation.

  9. Separation principle in stochastic control - Wikipedia

    en.wikipedia.org/wiki/Separation_principle_in...

    where is the gain of the optimal linear-quadratic regulator obtained by taking = = and () deterministic, and where is the Kalman gain. There is also a non-Gaussian version of this problem (to be discussed below) where the Wiener process w {\displaystyle w} is replaced by a more general square-integrable martingale with possible jumps. [ 1 ]

  1. Ad

    related to: linear quadratic regulator example equation with solution