Search results
Results from the WOW.Com Content Network
The structure of an amide can be described also as a resonance between two alternative structures: neutral (A) and zwitterionic (B). It is estimated that for acetamide , structure A makes a 62% contribution to the structure, while structure B makes a 28% contribution (these figures do not sum to 100% because there are additional less-important ...
Structures of three kinds of amides: an organic amide (carboxamide), a sulfonamide, and a phosphoramide. In chemistry, the term amide (/ ˈ æ m aɪ d / or / ˈ æ m ɪ d / or / ˈ eɪ m aɪ d /) [1] [2] [3] is a compound with the functional group R n E(=O) x NR 2, where x is not zero, E is some element, and each R represents an organic group or hydrogen. [4]
The two major resonance forms of an amide. Another factor that plays a role in determining the reactivity of acyl compounds is resonance. Amides exhibit two main resonance forms. Both are major contributors to the overall structure, so much so that the amide bond between the carbonyl carbon and the amide nitrogen has significant double bond ...
Acetamide (systematic name: ethanamide) is an organic compound with the formula CH 3 CONH 2.It is an amide derived from ammonia and acetic acid.It finds some use as a plasticizer and as an industrial solvent. [5]
Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.
In chemistry, the mesomeric effect (or resonance effect) is a property of substituents or functional groups in a chemical compound.It is defined as the polarity produced in the molecule by the interaction of two pi bonds or between a pi bond and lone pair of electrons present on an adjacent atom. [1]
The formation of an amide using a carbodiimide is a common reaction, but carries the risk of several side reactions. The acid 1 will react with the carbodiimide to produce the key intermediate: the O-acylisourea 2 , which can be viewed as a carboxylic ester with an activated leaving group.
An amidate/imidate anion is formed upon deprotonation of an amide or imidic acid.Since amides and imidic acids are tautomers, they form the same anion upon deprotonation.The two names are thus synonyms describing the same anion, although arguably, imidate refers to the resonance contributor on the left, while amidate refers to the resonance contributor on the right.