enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reductions with samarium(II) iodide - Wikipedia

    en.wikipedia.org/wiki/Reductions_with_samarium...

    SmI 2 causes reductive dimerization of allylic or benzylic halides, and chiral halides undergo non-stereospecific reduction. [5] On the other hand, its functional group compatibility is greater than many reducing agentshalide reduction is possible in the presence of esters or alcohols. [6]

  3. Salt-free reduction - Wikipedia

    en.wikipedia.org/wiki/Salt-free_reduction

    In addition to the reduction of metal halides, the reagents associated with this methodology are applicable to deoxygenation of organic substrates. [1] A typical reducing agent is N,N'-bis(trimethylsilyl)-4,4'-bipyridinylidene. Related pyrazine- and cyclohexadiene-based reagents have been developed. They are red or orange THF-soluble solids.

  4. Reductive dehalogenation of halo ketones - Wikipedia

    en.wikipedia.org/wiki/Reductive_dehalogenation...

    One-electron reducing agents, such as d 6 or d 1 transition metal complexes, initially donate a single electron to the halo ketone. Fragmentation of the resulting radical anion yields an organic radical and halide anion. Donation of a second electron from a second equivalent of reducing agent leads to the formation of a metal enolate in which ...

  5. Reducing agent - Wikipedia

    en.wikipedia.org/wiki/Reducing_agent

    Reducing agents can be ranked by increasing strength by ranking their reduction potentials. Reducers donate electrons to (that is, "reduce") oxidizing agents, which are said to "be reduced by" the reducer. The reducing agent is stronger when it has a more negative reduction potential and weaker when it has a more positive reduction potential.

  6. Carbonyl reduction - Wikipedia

    en.wikipedia.org/wiki/Carbonyl_reduction

    The result of these trends is that acid halides, ketones, and aldehydes are usually the most readily reduced compounds, while acids and esters require stronger reducing agents. Importantly and characteristically, these hydride reagents generally do not attack C=C bonds. [2] Several factors contribute to the strength of metal hydride reducing ...

  7. Titanium(III) chloride - Wikipedia

    en.wikipedia.org/wiki/Titanium(III)_chloride

    TiCl 3 is produced usually by reduction of titanium(IV) chloride.Older reduction methods used hydrogen: [4]. 2 TiCl 4 + H 2 → 2 HCl + 2 TiCl 3. It can also be produced by the reaction of titanium metal and hot, concentrated hydrochloric acid; the reaction does not proceed at room temperature, as titanium is passivated against most mineral acids by a thin surface layer of titanium dioxide.

  8. Lithium aluminium hydride - Wikipedia

    en.wikipedia.org/wiki/Lithium_aluminium_hydride

    Lithium aluminium hydride also reduces alkyl halides to alkanes. [36] [37] Alkyl iodides react the fastest, followed by alkyl bromides and then alkyl chlorides. Primary halides are the most reactive followed by secondary halides. Tertiary halides react only in certain cases. [38] Lithium aluminium hydride does not reduce simple alkenes or arenes.

  9. Hydrogen iodide - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_iodide

    Hydrogen iodide (HI) is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid.Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of the gas.