enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    In a computer with a full 32-bit by 32-bit multiplier, for example, one could choose B = 2 31 and store each digit as a separate 32-bit binary word. Then the sums x 1 + x 0 and y 1 + y 0 will not need an extra binary word for storing the carry-over digit (as in carry-save adder ), and the Karatsuba recursion can be applied until the numbers to ...

  3. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    To form the product of two 8-bit integers, for example, the digital device forms the sum and difference, looks both quantities up in a table of squares, takes the difference of the results, and divides by four by shifting two bits to the right. For 8-bit integers the table of quarter squares will have 2 9 −1=511 entries (one entry for the ...

  4. Booth's multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Booth's_multiplication...

    Booth's algorithm examines adjacent pairs of bits of the 'N'-bit multiplier Y in signed two's complement representation, including an implicit bit below the least significant bit, y −1 = 0. For each bit y i, for i running from 0 to N − 1, the bits y i and y i−1 are considered. Where these two bits are equal, the product accumulator P is

  5. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.

  6. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    This section has a simplified version of the algorithm, showing how to compute the product of two natural numbers ,, modulo a number of the form +, where = is some fixed number. The integers a , b {\displaystyle a,b} are to be divided into D = 2 k {\displaystyle D=2^{k}} blocks of M {\displaystyle M} bits, so in practical implementations, it is ...

  7. Binary multiplier - Wikipedia

    en.wikipedia.org/wiki/Binary_multiplier

    The method is slow, however, as it involves many intermediate additions. These additions are time-consuming. Faster multipliers may be engineered in order to do fewer additions; a modern processor can multiply two 64-bit numbers with 6 additions (rather than 64), and can do several steps in parallel. [citation needed]

  8. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    For multiplication, the most straightforward algorithms used for multiplying numbers by hand (as taught in primary school) require (N 2) operations, but multiplication algorithms that achieve O(N log(N) log(log(N))) complexity have been devised, such as the Schönhage–Strassen algorithm, based on fast Fourier transforms, and there are also ...

  9. Bitwise operation - Wikipedia

    en.wikipedia.org/wiki/Bitwise_operation

    In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits.It is a fast and simple action, basic to the higher-level arithmetic operations and directly supported by the processor.

  1. Related searches how to multiply 2 numbers in c mode in java 1 8 64 bit download full cracked

    how to multiply two numbershow to multiply n digits