enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. GNU Multiple Precision Arithmetic Library - Wikipedia

    en.wikipedia.org/wiki/GNU_Multiple_Precision...

    GNU Multiple Precision Arithmetic Library (GMP) is a free library for arbitrary-precision arithmetic, operating on signed integers, rational numbers, and floating-point numbers. [3] There are no practical limits to the precision except the ones implied by the available memory (operands may be of up to 2 32 −1 bits on 32-bit machines and 2 37 ...

  3. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    This section has a simplified version of the algorithm, showing how to compute the product of two natural numbers ,, modulo a number of the form +, where = is some fixed number. The integers a , b {\displaystyle a,b} are to be divided into D = 2 k {\displaystyle D=2^{k}} blocks of M {\displaystyle M} bits, so in practical implementations, it is ...

  4. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    To form the product of two 8-bit integers, for example, the digital device forms the sum and difference, looks both quantities up in a table of squares, takes the difference of the results, and divides by four by shifting two bits to the right. For 8-bit integers the table of quarter squares will have 2 9 −1=511 entries (one entry for the ...

  5. Binary multiplier - Wikipedia

    en.wikipedia.org/wiki/Binary_multiplier

    The method is slow, however, as it involves many intermediate additions. These additions are time-consuming. Faster multipliers may be engineered in order to do fewer additions; a modern processor can multiply two 64-bit numbers with 6 additions (rather than 64), and can do several steps in parallel. [citation needed]

  6. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    But if exact values for large factorials are desired, then special software is required, as in the pseudocode that follows, which implements the classic algorithm to calculate 1, 1×2, 1×2×3, 1×2×3×4, etc. the successive factorial numbers. constants: Limit = 1000 % Sufficient digits.

  7. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    The base B is typically 2 for microelectronic applications, 2 8 for 8-bit firmware, [4] or 2 32 or 2 64 for software applications. The REDC algorithm requires products modulo R, and typically R > N so that REDC can be used to compute products.

  8. Saturation arithmetic - Wikipedia

    en.wikipedia.org/wiki/Saturation_arithmetic

    Saturation arithmetic for integers has also been implemented in software for a number of programming languages including C, C++, such as the GNU Compiler Collection, [2] LLVM IR, and Eiffel. Support for saturation arithmetic is included as part of the C++26 Standard Library. This helps programmers anticipate and understand the effects of ...

  9. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    In a computer with a full 32-bit by 32-bit multiplier, for example, one could choose B = 2 31 and store each digit as a separate 32-bit binary word. Then the sums x 1 + x 0 and y 1 + y 0 will not need an extra binary word for storing the carry-over digit (as in carry-save adder), and the Karatsuba recursion can be applied until the numbers to ...

  1. Related searches how to multiply 2 numbers in c mode in java 1 8 64 bit download 2016 free

    how to multiply two numbersmultiplying numbers math
    how to multiply n digitshow to calculate multiplication