Search results
Results from the WOW.Com Content Network
For a general ring with unity R, the Jacobson radical J(R) is defined as the ideal of all elements r ∈ R such that rM = 0 whenever M is a simple R-module.That is, = {=}. This is equivalent to the definition in the commutative case for a commutative ring R because the simple modules over a commutative ring are of the form R / for some maximal ideal of R, and the annihilators of R / in R are ...
The first example of a radical was the nilradical introduced by Köthe (1930), based on a suggestion of Wedderburn (1908). In the next few years several other radicals were discovered, of which the most important example is the Jacobson radical. The general theory of radicals was defined independently by (Amitsur 1952, 1954, 1954b) and Kurosh ...
In abstract algebra, Jacobson's conjecture is an open problem in ring theory concerning the intersection of powers of the Jacobson radical of a Noetherian ring.. It has only been proven for special types of Noetherian rings, so far.
The concept of the Jacobson radical of a ring; that is, the intersection of all right (left) annihilators of simple right (left) modules over a ring, is one example. The fact that the Jacobson radical can be viewed as the intersection of all maximal right (left) ideals in the ring, shows how the internal structure of the ring is reflected by ...
The resulting theorem is sometimes known as the Jacobson–Azumaya theorem. [13] Let J(R) be the Jacobson radical of R. If U is a right module over a ring, R, and I is a right ideal in R, then define U·I to be the set of all (finite) sums of elements of the form u·i, where · is simply the action of R on U. Necessarily, U·I is a submodule of U.
In mathematics, a semi-local ring is a ring for which R/J(R) is a semisimple ring, where J(R) is the Jacobson radical of R. (Lam 2001, p. §20)(Mikhalev & Pilz 2002, p. C.7) The above definition is satisfied if R has a finite number of maximal right ideals (and finite number of maximal left ideals).
In abstract algebra, in particular ring theory, the Akizuki–Hopkins–Levitzki theorem connects the descending chain condition and ascending chain condition in modules over semiprimary rings. A ring R (with 1) is called semiprimary if R/J(R) is semisimple and J(R) is a nilpotent ideal, where J(R) denotes the Jacobson radical.
Any principal ideal domain or Dedekind domain with Jacobson radical zero is a Jacobson ring. In principal ideal domains and Dedekind domains, the nonzero prime ideals are already maximal, so the only thing to check is if the zero ideal is an intersection of maximal ideals. Asking for the Jacobson radical to be zero guarantees this.