Search results
Results from the WOW.Com Content Network
In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.
Lattice-theoretic information about the lattice of subgroups can sometimes be used to infer information about the original group, an idea that goes back to the work of Øystein Ore (1937, 1938). For instance, as Ore proved , a group is locally cyclic if and only if its lattice of subgroups is distributive .
Let be a locally compact group and a discrete subgroup (this means that there exists a neighbourhood of the identity element of such that = {}).Then is called a lattice in if in addition there exists a Borel measure on the quotient space / which is finite (i.e. (/) < +) and -invariant (meaning that for any and any open subset / the equality () = is satisfied).
a lattice (group), a discrete subgroup of R n and its generalizations a lattice ordered group , a group that with a partial ordering that is a lattice order Topics referred to by the same term
In differential geometry, a triply periodic minimal surface (TPMS) is a minimal surface in that is invariant under a rank-3 lattice of translations. These surfaces have the symmetries of a crystallographic group. Numerous examples are known with cubic, tetragonal, rhombohedral, and orthorhombic symmetries.
Lattice models in biophysics represent a class of statistical-mechanical models which consider a biological macromacromolecule (such as DNA, protein, actin, ...
In geometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice. [1] Despite its suggestive name, the unit cell (unlike a unit vector, for example) does not necessarily have unit size, or even a particular size at all.
The diamond crystal structure belongs to the face-centered cubic lattice, with a repeated two-atom pattern. In crystallography, a crystal system is a set of point groups (a group of geometric symmetries with at least one fixed point). A lattice system is a set of Bravais lattices.