Search results
Results from the WOW.Com Content Network
This equation, stated by Euler in 1758, [3] is known as Euler's polyhedron formula. [4] It corresponds to the Euler characteristic of the sphere (i.e. χ = 2 {\displaystyle \ \chi =2\ } ), and applies identically to spherical polyhedra .
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler.
An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once
The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case. [1] Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2]
This can be seen intuitively in that the Euler class is a class whose degree depends on the dimension of the bundle (or manifold, if the tangent bundle): the Euler class is an element of () where is the dimension of the bundle, while the other classes have a fixed dimension (e.g., the first Stiefel-Whitney class is an element of ()).
Euler also discovered the formula + = relating the number of vertices, edges, and faces of a convex polyhedron, [92] and hence of a planar graph. The constant in this formula is now known as the Euler characteristic for the graph (or other mathematical object), and is related to the genus of the object. [93]
Euler's identity therefore states that the limit, as n approaches infinity, of (+) is equal to −1. This limit is illustrated in the animation to the right. Euler's formula for a general angle. Euler's identity is a special case of Euler's formula, which states that for any real number x,
Leonhard Euler investigated them and associated polynomials in his 1755 book Institutiones calculi differentialis. The polynomials presently known as Eulerian polynomials in Euler's work from 1755, Institutiones calculi differentialis, part 2, p. 485/6. The coefficients of these polynomials are known as Eulerian numbers.