enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conservation of mass - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_mass

    The law of conservation of mass and the analogous law of conservation of energy were finally generalized and unified into the principle of massenergy equivalence, described by Albert Einstein's equation =. Special relativity also redefines the concept of mass and energy, which can be used interchangeably and are defined relative to the frame ...

  3. Neutrino - Wikipedia

    en.wikipedia.org/wiki/Neutrino

    The neutrino [a] was postulated first by Wolfgang Pauli in 1930 to explain how beta decay could conserve energy, momentum, and angular momentum ().In contrast to Niels Bohr, who proposed a statistical version of the conservation laws to explain the observed continuous energy spectra in beta decay, Pauli hypothesized an undetected particle that he called a "neutron", using the same -on ending ...

  4. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Massenergy_equivalence

    Massenergy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).

  5. Effective mass (solid-state physics) - Wikipedia

    en.wikipedia.org/wiki/Effective_mass_(solid...

    For electrons or electron holes in a solid, the effective mass is usually stated as a factor multiplying the rest mass of an electron, m e (9.11 × 10 −31 kg). This factor is usually in the range 0.01 to 10, but can be lower or higher—for example, reaching 1,000 in exotic heavy fermion materials , or anywhere from zero to infinity ...

  6. Binding energy - Wikipedia

    en.wikipedia.org/wiki/Binding_energy

    Electron binding energy, more commonly known as ionization energy, [3] is a measure of the energy required to free an electron from its atomic orbital or from a solid. The electron binding energy derives from the electromagnetic interaction of the electron with the nucleus and the other electrons of the atom , molecule or solid and is mediated ...

  7. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes.The law distinguishes two principal forms of energy transfer, heat and thermodynamic work, that modify a thermodynamic system containing a constant amount of matter.

  8. Invariant mass - Wikipedia

    en.wikipedia.org/wiki/Invariant_mass

    Rest energy (also called rest mass energy) is the energy associated with a particle's invariant mass. [2] [3] The rest energy of a particle is defined as: =, where is the speed of light in vacuum. [2] [3] [4] In general, only differences in energy have physical significance. [5]

  9. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    In this case, conservation of invariant mass of the system also will no longer hold. Such a loss of rest mass in systems when energy is removed, according to E = mc 2 where E is the energy removed, and m is the change in rest mass, reflect changes of mass associated with movement of energy, not "conversion" of mass to energy.