Search results
Results from the WOW.Com Content Network
In SI units, permeability is measured in henries per meter (H/m), or equivalently in newtons per ampere squared (N/A 2). The permeability constant μ 0, also known as the magnetic constant or the permeability of free space, is the proportionality between magnetic induction and magnetizing force when forming a magnetic field in a classical vacuum.
The vacuum magnetic permeability (variously vacuum permeability, permeability of free space, permeability of vacuum, magnetic constant) is the magnetic permeability in a classical vacuum. It is a physical constant , conventionally written as μ 0 (pronounced "mu nought" or "mu zero").
Different materials have different saturation levels. For example, high permeability iron alloys used in transformers reach magnetic saturation at 1.6–2.2 teslas (T), [4] whereas ferrites saturate at 0.2–0.5 T. [5] Some amorphous alloys saturate at 1.2–1.3 T. [6] Mu-metal saturates at around 0.8 T. [7] [8]
where μ 0 is the vacuum permeability (see table of physical constants), and (1 + χ v) is the relative permeability of the material. Thus the volume magnetic susceptibility χ v and the magnetic permeability μ are related by the following formula: = (+).
Permeability (electromagnetism), the degree of magnetization of a material in response to a magnetic field Vacuum permeability, permeability of free space or magnetic constant, a physical constant, the value of magnetic permeability in a classical vacuum
It is a measure of material permeability variation after demagnetization, given by a formula = (), where , are permeability values, and t 1, t 2 are time from demagnetization; usually determined for t 1 = 10 min, t 2 = 100 min; range from 2×10 −6 to 12×10 −6 for typical MnZn and NiZn ferrites;
By definition, the linear relative permittivity of vacuum is equal to 1, [19] that is ε = ε 0, although there are theoretical nonlinear quantum effects in vacuum that become non-negligible at high field strengths. [20] The following table gives some typical values.
which is convenient for various calculations. The vacuum permeability μ 0 is, approximately, 4π × 10 −7 V·s/(A·m). A relation between M and H exists in many materials. In diamagnets and paramagnets, the relation is usually linear: