Search results
Results from the WOW.Com Content Network
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality is always true in elementary algebra. For example, in elementary arithmetic, one has Therefore, one would say that multiplication distributes over addition. This basic property of numbers is part of the ...
Some basic properties of a ring follow immediately from the axioms: The additive identity is unique. The additive inverse of each element is unique. The multiplicative identity is unique. For any element x in a ring R, one has x0 = 0 = 0x (zero is an absorbing element with respect to multiplication) and (–1)x = –x.
Boolean algebra (structure) In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can ...
The category Ring is a concrete category meaning that the objects are sets with additional structure (addition and multiplication) and the morphisms are functions that preserve this structure. There is a natural forgetful functor. U : Ring → Set. for the category of rings to the category of sets which sends each ring to its underlying set ...
By convention, a ring has the multiplicative identity. But some authors do not require a ring to have the multiplicative identity; i.e., for them, a ring is a rng. For a rng R, a left ideal I is a subrng with the additional property that is in I for every and every . (Right and two-sided ideals are defined similarly.)
The symmetric difference is the set of elements that are in either set, but not in the intersection. Symbolic statement. A Δ B = ( A ∖ B ) ∪ ( B ∖ A ) {\displaystyle A\,\Delta \,B=\left (A\setminus B\right)\cup \left (B\setminus A\right)} In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set ...
If K is a commutative ring, the polynomial ring K[X 1, …, X n] has the following universal property: for every commutative K-algebra A, and every n-tuple (x 1, …, x n) of elements of A, there is a unique algebra homomorphism from K[X 1, …, X n] to A that maps each to the corresponding .
t. e. In mathematics, an algebraic structure consists of a nonempty set A (called the underlying set, carrier set or domain), a collection of operations on A (typically binary operations such as addition and multiplication), and a finite set of identities (known as axioms) that these operations must satisfy. An algebraic structure may be based ...