Search results
Results from the WOW.Com Content Network
The defining expression for entropy in the theory of information established by Claude E. Shannon in 1948 is of the form: where is the probability of the message taken from the message space M, and b is the base of the logarithm used. Common values of b are 2, Euler's number e, and 10, and the unit of entropy is shannon (or bit) for b = 2, nat ...
In information theory, the entropy of a random variable quantifies the average level of uncertainty or information associated with the variable's potential states or possible outcomes. This measures the expected amount of information needed to describe the state of the variable, considering the distribution of probabilities across all potential ...
Thus, by definition from equation (i): (Information gain) = H(t) - H(s,t) After all the steps, gain(s), where s is a candidate split for the example is: gain(s) = 0.985 – 0.857 = 0.128 The newly created tree with the root node split based on Mutation 3. Mutation 3 had the highest information gain, so it was selected as the split.
Information theory. Information theory is the mathematical study of the quantification, storage, and communication of information. The field was established and put on a firm footing by Claude Shannon in the 1940s, [1] though early contributions were made in the 1920s through the works of Harry Nyquist and Ralph Hartley.
However, as calculated in the example, the entropy of the system of ice and water has increased more than the entropy of the surrounding room has decreased. In an isolated system such as the room and ice water taken together, the dispersal of energy from warmer to cooler always results in a net increase in entropy. Thus, when the "universe" of ...
v. t. e. Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning. In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations. Tree models where the target variable can take a discrete set of values are called ...
Mutual information is a measure of the inherent dependence expressed in the joint distribution of and relative to the marginal distribution of and under the assumption of independence. Mutual information therefore measures dependence in the following sense: if and only if and are independent random variables.
The violet is the mutual information . In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons, nats, or hartleys. The entropy of conditioned on is written as .