enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    v. t. e. In mathematics, a geometric series is a series summing the terms of an infinite geometric sequence, in which the ratio of consecutive terms is constant. For example, the series is a geometric series with common ratio ⁠ ⁠, which converges to the sum of ⁠ ⁠. Each term in a geometric series is the geometric mean of the term before ...

  3. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    The first block is a unit block and the dashed line represents the infinite sum of the sequence, a number that it will forever approach but never touch: 2, 3/2, and 4/3 respectively. A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying ...

  4. 1/4 + 1/16 + 1/64 + 1/256 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/4_%2B_1/16_%2B_1/64_%2B...

    1/4 + 1/16 + 1/64 + 1/256 + ⋯. Archimedes' figure with a = ⁠ 3 4 ⁠. In mathematics, the infinite series ⁠ 1 4 ⁠ + ⁠ 1 16 ⁠ + ⁠ 1 64 ⁠ + ⁠ 1 256 ⁠ + ⋯ is an example of one of the first infinite series to be summed in the history of mathematics; it was used by Archimedes circa 250–200 BC. [1] As it is a geometric series ...

  5. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    List of mathematical series. This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. is a Bernoulli polynomial. is an Euler number. is the Riemann zeta function. is the gamma function. is a polygamma function. is a polylogarithm.

  6. 1 + 2 + 4 + 8 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_4_%2B_8_%2B_%E...

    The first four partial sums of 1 + 2 + 4 + 8 + ⋯. In mathematics, 1 + 2 + 4 + 8 + ⋯ is the infinite series whose terms are the successive powers of two. As a geometric series, it is characterized by its first term, 1, and its common ratio, 2. As a series of real numbers it diverges to infinity, so the sum of this series is infinity.

  7. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    1/2 + 1/4 + 1/8 + 1/16 + ⋯. First six summands drawn as portions of a square. The geometric series on the real line. In mathematics, the infinite series ⁠ 1 2 ⁠ + ⁠ 1 4 ⁠ + ⁠ 1 8 ⁠ + ⁠ 1 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation ...

  8. 1 − 2 + 4 − 8 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%E2%88%92_2_%2B_4_%E2%88...

    1 − 2 + 4 − 8 + ⋯. In mathematics, 1 − 2 + 4 − 8 + ⋯ is the infinite series whose terms are the successive powers of two with alternating signs. As a geometric series, it is characterized by its first term, 1, and its common ratio, −2. As a series of real numbers, it diverges. So in the usual sense it has no sum.

  9. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    This is a particular case of the sum of the reciprocals of any geometric series where the first term and the common ratio are positive integers. If the first term is a and the common ratio is r then the sum is ⁠ r / a (r − 1) ⁠. The Kempner series is the sum of the reciprocals of all positive integers not containing the digit "9" in base 10.