Search results
Results from the WOW.Com Content Network
Schematic view of the different current systems which shape the Earth's magnetosphere. In many MHD systems most of the electric current is compressed into thin nearly-two-dimensional ribbons termed current sheets. [10] These can divide the fluid into magnetic domains, inside of which the currents are relatively weak.
The heliospheric current sheet is a three-dimensional form of a Parker spiral that results from the influence of the Sun's rotating magnetic field on the plasma in the interplanetary medium. [ 1 ]
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
This current reduces the magnetic field at the Earth's surface. [27] Particles that penetrate the ionosphere and collide with the atoms there give rise to the lights of the aurorae while also emitting X-rays. [28] The varying conditions in the magnetosphere, known as space weather, are largely driven by solar
Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.
The plasmasphere, or inner magnetosphere, is a region of the Earth's magnetosphere consisting of low-energy (cool) plasma. It is located above the ionosphere . The outer boundary of the plasmasphere is known as the plasmapause , which is defined by an order of magnitude drop in plasma density.
The most functional feature of kinematic dynamo theory is that it can be used to test whether a velocity field is or is not capable of dynamo action. By experimentally applying a certain velocity field to a small magnetic field, one can observe whether the magnetic field tends to grow (or not) in response to the applied flow.
The interaction between solar wind and geomagnetic field eventually combine to result in the formation of an electrical current layer, which is called the magnetopause. This electric current layer confines the Earth's magnetic field. The region in which the magnetopause is enclosed in is known as the magnetosphere. [7]