Ads
related to: how to solve algebraic fractionsgenerationgenius.com has been visited by 100K+ users in the past month
- Grades 3-5 Math lessons
Get instant access to hours of fun
standards-based 3-5 videos & more.
- Grades K-2 Math Lessons
Get instant access to hours of fun
standards-based K-2 videos & more.
- K-8 Standards Alignment
Videos & lessons cover most
of the standards for every state
- Teachers Try it Free
Get 30 days access for free.
No credit card or commitment needed
- Grades 3-5 Math lessons
kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Algebraic fractions are subject to the same laws as arithmetic fractions. A rational fraction is an algebraic fraction whose numerator and denominator are both polynomials . Thus 3 x x 2 + 2 x − 3 {\displaystyle {\frac {3x}{x^{2}+2x-3}}} is a rational fraction, but not x + 2 x 2 − 3 , {\displaystyle {\frac {\sqrt {x+2}}{x^{2}-3}},} because ...
Continued fractions are most conveniently applied to solve the general quadratic equation expressed in the form of a monic polynomial x 2 + b x + c = 0 {\displaystyle x^{2}+bx+c=0} which can always be obtained by dividing the original equation by its leading coefficient .
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
The terminology used to describe algebraic fractions is similar to that used for ordinary fractions. For example, an algebraic fraction is in lowest terms if the only factors common to the numerator and the denominator are 1 and −1. An algebraic fraction whose numerator or denominator, or both, contain a fraction, such as + , is called ...
Another meaning for generalized continued fraction is a generalization to higher dimensions. For example, there is a close relationship between the simple continued fraction in canonical form for the irrational real number α, and the way lattice points in two dimensions lie to either side of the line y = αx. Generalizing this idea, one might ...
where x is a variable we are interested in solving for, we can use cross-multiplication to determine that x = b c d . {\displaystyle x={\frac {bc}{d}}.} For example, suppose we want to know how far a car will travel in 7 hours, if we know that its speed is constant and that it already travelled 90 miles in the last 3 hours.
Ads
related to: how to solve algebraic fractionsgenerationgenius.com has been visited by 100K+ users in the past month
kutasoftware.com has been visited by 10K+ users in the past month