Search results
Results from the WOW.Com Content Network
Gravitation of the Moon. The acceleration due to gravity on the surface of the Moon is approximately 1.625 m/s 2, about 16.6% that on Earth's surface or 0.166 ɡ. [1] Over the entire surface, the variation in gravitational acceleration is about 0.0253 m/s 2 (1.6% of the acceleration due to gravity). Because weight is directly dependent upon ...
The Moon's gravitational pull—and, to a lesser extent, the Sun's—are the main drivers of Earth's tides. In geophysical terms , the Moon is a planetary-mass object or satellite planet . Its mass is 1.2% that of the Earth, and its diameter is 3,474 km (2,159 mi), roughly one-quarter of Earth's (about as wide as the United States from coast to ...
^ Surface gravity derived from the mass m, the gravitational constant G and the radius r: Gm/r 2. ^ Escape velocity derived from the mass m, the gravitational constant G and the radius r: √ (2Gm)/r. ^ Orbital speed is calculated using the mean orbital radius and the orbital period, assuming a circular orbit. ^ Assuming a density of 2.0
Gravitational acceleration on the moon is roughly six times weaker than it is on Earth, so the Lunar Descent Engine didn't have to work all that hard: closer to 6,000 pounds of thrust, rather than ...
t. e. Newton's law of universal gravitation states that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Separated objects attract and are attracted as if all their mass were concentrated ...
For example, even though the Sun has a stronger overall gravitational pull on Earth, the Moon creates a larger tidal bulge because the Moon is closer. This difference is due to the way gravity weakens with distance: the Moon's closer proximity creates a steeper decline in its gravitational pull as you move across Earth (compared to the Sun's ...
They are driven by the gravitational forces of the sun and moon and occur when the moon, Earth and sun align and the moon is closest to Earth in its orbit. ... "The gravitational pull is felt more ...
Tidal acceleration is an effect of the tidal forces between an orbiting natural satellite (e.g. the Moon) and the primary planet that it orbits (e.g. Earth). The acceleration causes a gradual recession of a satellite in a prograde orbit (satellite moving to a higher orbit, away from the primary body), and a corresponding slowdown of the primary ...