Search results
Results from the WOW.Com Content Network
In mathematics, a series is the sum of ... The series can be compared to an integral to establish convergence or divergence. Let () = be a positive and ...
In mathematics, convergence tests are methods of testing for the convergence, conditional convergence, absolute convergence, interval of convergence or divergence of an infinite series =. List of tests
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge. The divergence of a tensor field of non-zero order k is written as =, a contraction of a tensor field of order k − 1. Specifically, the divergence of a vector is a scalar.
The two classical summation methods for series, ordinary convergence and absolute convergence, define the sum as a limit of certain partial sums. These are included only for completeness; strictly speaking they are not true summation methods for divergent series since, by definition, a series is divergent only if these methods do not work.
In mathematics, there are many senses in which a sequence or a series is said to be convergent. This article describes various modes (senses or species) of convergence in the settings where they are defined. For a list of modes of convergence, see Modes of convergence (annotated index)
Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.
In formal mathematics, rates of convergence and orders of convergence are often described comparatively using asymptotic notation commonly called "big O notation," which can be used to encompass both of the prior conventions; this is an application of asymptotic analysis.